

Status of XAL at FRIB

Paul Chu Professor

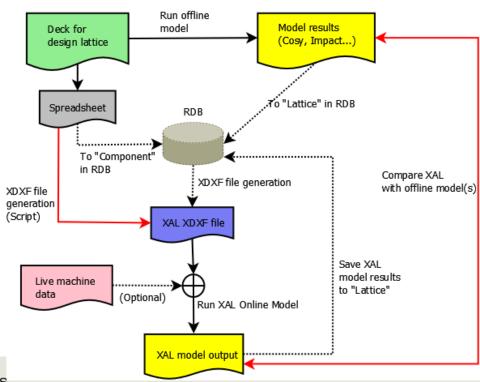
Outline

- Usual setup procedure
- Modifications to XAL and Online Model
- XAL configuration files and database
- Benchmark online model
- Lattice/Model database
- ReA3 Tuning Application
- Summary

Set up XAL at FRIB

- Prepared XAL XDXF files from IMPACT file via Matlab
- XAL source code
 - "xal4frib" package in FRIB local CVS repository
 - Branch off xal4lcls
 - Same source code also in SourceForge (xal_frib project)
- XAL source code, compiled JAR files and configuration files saved on shared folder (accessible from both Windows and Linux)
 - Examples/simple scripts for MATLAB and JYTHON

Modifications to XAL/Online Model

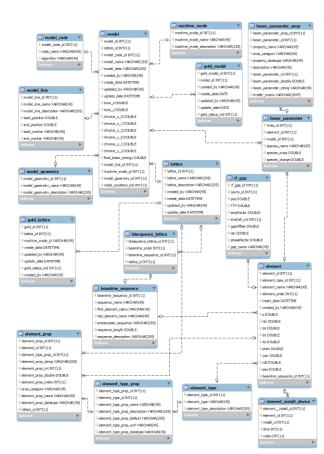

- New device types added:
 - Cylindrical bend
 - Spherical bend
 - Electrostatic dipole
 - Electrostatic quadrupole
- Transfer matrix longitudinal elements modified due to different coordinate system units and reference particle frame

XAL Configuration Files and Database

- XAL initialization files for FRIB linac and ReA3
 - A temporary set generated from physicists' spreadsheets
 - Only design lattice for FRIB, ReA3 file has EPICS PV names
 - Unit conversion such as field vs. integrated field, power supply current vs. field
- Master spreadsheet
- Java program upload the master spreadsheet to RDB
- Java program to generate XAL files from database via RDB data access API (aka "DB2XAL")

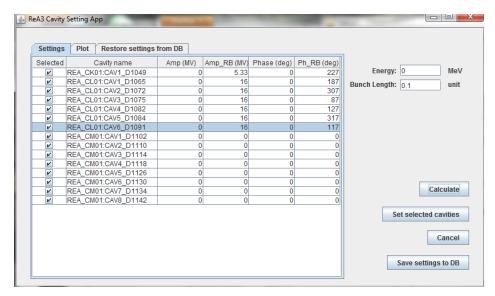
Online Model Benchmark [1]

- Join effort with ReA3 and Accelerator Physics Department (thanks to C. Benatti, D. Leitner, M. Syphers, W. Wittmer, X. Wu, Y. Yamazaki, Y. Zhang, Q. Zhao)
- Compare with other codes
 - COSY (matrix based)
 - IMPACT (multi-particle tracking)
- Comparison
 - Scripts to extract model data
 - Same initial beam conditions
 - Compare individual device types
 - Compare beamlines



Online Model Benchmark [2]

- Compare individual devices
 - Focus
 - » Quad magnetic, electrostatic
 - » Solenoid
 - » Sextupole
 - Bend
 - » Spherical Bend
 - » Cylindrical Bend
 - Accelerate
 - » Cavity single-gap, multi-gap
 - All 6x6 matrices agreed between XAL and COSY
- Beam parameters to compare
 - Energy
 - 6x6 Transfer Matrix
 - Phase space coordinates, Twiss parameters (α,β,ε)
 - Phase advance, Dispersion, Chromaticity


Lattice/Model Database Design

- Model database for storing model run input and output data
- Based on SLAC/LCLS XAL Machine_Model and IRMIS 3 Schemas
- Loosely coupled to rest of global DB
- General lattice/model data holder
 - Prototype with FRIB official expanded lattice
- Modes support:
 - Design
 - Live machine
 - User-defined
 - Other
- Code independent
- Collaboration with BNL

ReA3 Physics Applications

- Cavity Setting App
 - Based on desired energy, calculate cavity amplitude (all cavities set to the same amplitude)
 - Based on TOF, calculate cavity phases
 - Testing with Virtual Accelerator
 » Read-only mode with real machine
 - Unable to fully test due to low-level issues
- ReA3 model fitting
 - Solenoid strengths in doubt
 - Need beam time for further tests

Summary

- XAL deployed at FRIB
 - Site specific patches added
 - Initialization files for FRIB, ReA3
- XAL Online Model benchmarked with IMPACT, COSY
 - Online model certified and ready for ReA3 machine
- ReA3 applications prototyped
 - Preliminary program with GUI developed
 - Further algorithms will be added in the future
- Related database schemas prototyped
 - Device/Component (Lattice), and Model data
 - Database access API near completion
- Near future plan
 - Validate FRIB Linac data with XAL files generated from RDB